ast.cpp 70 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
#include "sass.hpp"
#include "ast.hpp"
#include "context.hpp"
#include "node.hpp"
#include "eval.hpp"
#include "extend.hpp"
#include "emitter.hpp"
#include "color_maps.hpp"
#include "ast_fwd_decl.hpp"
#include <set>
#include <iomanip>
#include <iostream>
#include <algorithm>
#include <functional>
#include <cctype>
#include <locale>

namespace Sass {

  static Null sass_null(ParserState("null"));

  bool Wrapped_Selector::find ( bool (*f)(AST_Node_Obj) )
  {
    // check children first
    if (selector_) {
      if (selector_->find(f)) return true;
    }
    // execute last
    return f(this);
  }

  bool Selector_List::find ( bool (*f)(AST_Node_Obj) )
  {
    // check children first
    for (Complex_Selector_Obj sel : elements()) {
      if (sel->find(f)) return true;
    }
    // execute last
    return f(this);
  }

  bool Compound_Selector::find ( bool (*f)(AST_Node_Obj) )
  {
    // check children first
    for (Simple_Selector_Obj sel : elements()) {
      if (sel->find(f)) return true;
    }
    // execute last
    return f(this);
  }

  bool Complex_Selector::find ( bool (*f)(AST_Node_Obj) )
  {
    // check children first
    if (head_ && head_->find(f)) return true;
    if (tail_ && tail_->find(f)) return true;
    // execute last
    return f(this);
  }

  bool Supports_Operator::needs_parens(Supports_Condition_Obj cond) const {
    if (Supports_Operator_Obj op = Cast<Supports_Operator>(cond)) {
      return op->operand() != operand();
    }
    return Cast<Supports_Negation>(cond) != NULL;
  }

  bool Supports_Negation::needs_parens(Supports_Condition_Obj cond) const {
    return Cast<Supports_Negation>(cond) ||
           Cast<Supports_Operator>(cond);
  }

  void str_rtrim(std::string& str, const std::string& delimiters = " \f\n\r\t\v")
  {
    str.erase( str.find_last_not_of( delimiters ) + 1 );
  }

  void String_Constant::rtrim()
  {
    str_rtrim(value_);
  }

  void String_Schema::rtrim()
  {
    if (!empty()) {
      if (String_Ptr str = Cast<String>(last())) str->rtrim();
    }
  }

  void Argument::set_delayed(bool delayed)
  {
    if (value_) value_->set_delayed(delayed);
    is_delayed(delayed);
  }

  void Arguments::set_delayed(bool delayed)
  {
    for (Argument_Obj arg : elements()) {
      if (arg) arg->set_delayed(delayed);
    }
    is_delayed(delayed);
  }


  bool At_Root_Query::exclude(std::string str)
  {
    bool with = feature() && unquote(feature()->to_string()).compare("with") == 0;
    List_Ptr l = static_cast<List_Ptr>(value().ptr());
    std::string v;

    if (with)
    {
      if (!l || l->length() == 0) return str.compare("rule") != 0;
      for (size_t i = 0, L = l->length(); i < L; ++i)
      {
        v = unquote((*l)[i]->to_string());
        if (v.compare("all") == 0 || v == str) return false;
      }
      return true;
    }
    else
    {
      if (!l || !l->length()) return str.compare("rule") == 0;
      for (size_t i = 0, L = l->length(); i < L; ++i)
      {
        v = unquote((*l)[i]->to_string());
        if (v.compare("all") == 0 || v == str) return true;
      }
      return false;
    }
  }

  void AST_Node::update_pstate(const ParserState& pstate)
  {
    pstate_.offset += pstate - pstate_ + pstate.offset;
  }

  bool Simple_Selector::is_ns_eq(const Simple_Selector& r) const
  {
    // https://github.com/sass/sass/issues/2229
    if ((has_ns_ == r.has_ns_) ||
        (has_ns_ && ns_.empty()) ||
        (r.has_ns_ && r.ns_.empty())
    ) {
      if (ns_.empty() && r.ns() == "*") return false;
      else if (r.ns().empty() && ns() == "*") return false;
      else return ns() == r.ns();
    }
    return false;
  }

  bool Compound_Selector::operator< (const Compound_Selector& rhs) const
  {
    size_t L = std::min(length(), rhs.length());
    for (size_t i = 0; i < L; ++i)
    {
      Simple_Selector_Obj l = (*this)[i];
      Simple_Selector_Obj r = rhs[i];
      if (!l && !r) return false;
      else if (!r) return false;
      else if (!l) return true;
      else if (*l != *r)
      { return *l < *r; }
    }
    // just compare the length now
    return length() < rhs.length();
  }

  bool Compound_Selector::has_parent_ref() const
  {
    for (Simple_Selector_Obj s : *this) {
      if (s && s->has_parent_ref()) return true;
    }
    return false;
  }

  bool Compound_Selector::has_real_parent_ref() const
  {
    for (Simple_Selector_Obj s : *this) {
      if (s && s->has_real_parent_ref()) return true;
    }
    return false;
  }

  bool Complex_Selector::has_parent_ref() const
  {
    return (head() && head()->has_parent_ref()) ||
           (tail() && tail()->has_parent_ref());
  }

  bool Complex_Selector::has_real_parent_ref() const
  {
    return (head() && head()->has_real_parent_ref()) ||
           (tail() && tail()->has_real_parent_ref());
  }

  bool Complex_Selector::operator< (const Complex_Selector& rhs) const
  {
    // const iterators for tails
    Complex_Selector_Ptr_Const l = this;
    Complex_Selector_Ptr_Const r = &rhs;
    Compound_Selector_Ptr l_h = NULL;
    Compound_Selector_Ptr r_h = NULL;
    if (l) l_h = l->head();
    if (r) r_h = r->head();
    // process all tails
    while (true)
    {
      #ifdef DEBUG
      // skip empty ancestor first
      if (l && l->is_empty_ancestor())
      {
        l_h = NULL;
        l = l->tail();
        if(l) l_h = l->head();
        continue;
      }
      // skip empty ancestor first
      if (r && r->is_empty_ancestor())
      {
        r_h = NULL;
        r = r->tail();
        if (r) r_h = r->head();
        continue;
      }
      #endif
      // check for valid selectors
      if (!l) return !!r;
      if (!r) return false;
      // both are null
      else if (!l_h && !r_h)
      {
        // check combinator after heads
        if (l->combinator() != r->combinator())
        { return l->combinator() < r->combinator(); }
        // advance to next tails
        l = l->tail();
        r = r->tail();
        // fetch the next headers
        l_h = NULL; r_h = NULL;
        if (l) l_h = l->head();
        if (r) r_h = r->head();
      }
      // one side is null
      else if (!r_h) return true;
      else if (!l_h) return false;
      // heads ok and equal
      else if (*l_h == *r_h)
      {
        // check combinator after heads
        if (l->combinator() != r->combinator())
        { return l->combinator() < r->combinator(); }
        // advance to next tails
        l = l->tail();
        r = r->tail();
        // fetch the next headers
        l_h = NULL; r_h = NULL;
        if (l) l_h = l->head();
        if (r) r_h = r->head();
      }
      // heads are not equal
      else return *l_h < *r_h;
    }
  }

  bool Complex_Selector::operator== (const Complex_Selector& rhs) const
  {
    // const iterators for tails
    Complex_Selector_Ptr_Const l = this;
    Complex_Selector_Ptr_Const r = &rhs;
    Compound_Selector_Ptr l_h = NULL;
    Compound_Selector_Ptr r_h = NULL;
    if (l) l_h = l->head();
    if (r) r_h = r->head();
    // process all tails
    while (true)
    {
      #ifdef DEBUG
      // skip empty ancestor first
      if (l && l->is_empty_ancestor())
      {
        l_h = NULL;
        l = l->tail();
        if (l) l_h = l->head();
        continue;
      }
      // skip empty ancestor first
      if (r && r->is_empty_ancestor())
      {
        r_h = NULL;
        r = r->tail();
        if (r) r_h = r->head();
        continue;
      }
      #endif
      // check the pointers
      if (!r) return !l;
      if (!l) return !r;
      // both are null
      if (!l_h && !r_h)
      {
        // check combinator after heads
        if (l->combinator() != r->combinator())
        { return l->combinator() < r->combinator(); }
        // advance to next tails
        l = l->tail();
        r = r->tail();
        // fetch the next heads
        l_h = NULL; r_h = NULL;
        if (l) l_h = l->head();
        if (r) r_h = r->head();
      }
      // equals if other head is empty
      else if ((!l_h && !r_h) ||
               (!l_h && r_h->empty()) ||
               (!r_h && l_h->empty()) ||
               (l_h && r_h && *l_h == *r_h))
      {
        // check combinator after heads
        if (l->combinator() != r->combinator())
        { return l->combinator() == r->combinator(); }
        // advance to next tails
        l = l->tail();
        r = r->tail();
        // fetch the next heads
        l_h = NULL; r_h = NULL;
        if (l) l_h = l->head();
        if (r) r_h = r->head();
      }
      // abort
      else break;
    }
    // unreachable
    return false;
  }

  Compound_Selector_Ptr Compound_Selector::unify_with(Compound_Selector_Ptr rhs)
  {
    if (empty()) return rhs;
    Compound_Selector_Obj unified = SASS_MEMORY_COPY(rhs);
    for (size_t i = 0, L = length(); i < L; ++i)
    {
      if (unified.isNull()) break;
      unified = at(i)->unify_with(unified);
    }
    return unified.detach();
  }

  bool Complex_Selector::operator== (const Selector& rhs) const
  {
    if (const Selector_List* sl = Cast<Selector_List>(&rhs)) return *this == *sl;
    if (const Simple_Selector* sp = Cast<Simple_Selector>(&rhs)) return *this == *sp;
    if (const Complex_Selector* cs = Cast<Complex_Selector>(&rhs)) return *this == *cs;
    if (const Compound_Selector* ch = Cast<Compound_Selector>(&rhs)) return *this == *ch;
    throw std::runtime_error("invalid selector base classes to compare");
  }


  bool Complex_Selector::operator< (const Selector& rhs) const
  {
    if (const Selector_List* sl = Cast<Selector_List>(&rhs)) return *this < *sl;
    if (const Simple_Selector* sp = Cast<Simple_Selector>(&rhs)) return *this < *sp;
    if (const Complex_Selector* cs = Cast<Complex_Selector>(&rhs)) return *this < *cs;
    if (const Compound_Selector* ch = Cast<Compound_Selector>(&rhs)) return *this < *ch;
    throw std::runtime_error("invalid selector base classes to compare");
  }

  bool Compound_Selector::operator== (const Selector& rhs) const
  {
    if (const Selector_List* sl = Cast<Selector_List>(&rhs)) return *this == *sl;
    if (const Simple_Selector* sp = Cast<Simple_Selector>(&rhs)) return *this == *sp;
    if (const Complex_Selector* cs = Cast<Complex_Selector>(&rhs)) return *this == *cs;
    if (const Compound_Selector* ch = Cast<Compound_Selector>(&rhs)) return *this == *ch;
    throw std::runtime_error("invalid selector base classes to compare");
  }

  bool Compound_Selector::operator< (const Selector& rhs) const
  {
    if (const Selector_List* sl = Cast<Selector_List>(&rhs)) return *this < *sl;
    if (const Simple_Selector* sp = Cast<Simple_Selector>(&rhs)) return *this < *sp;
    if (const Complex_Selector* cs = Cast<Complex_Selector>(&rhs)) return *this < *cs;
    if (const Compound_Selector* ch = Cast<Compound_Selector>(&rhs)) return *this < *ch;
    throw std::runtime_error("invalid selector base classes to compare");
  }

  bool Selector_Schema::operator== (const Selector& rhs) const
  {
    if (const Selector_List* sl = Cast<Selector_List>(&rhs)) return *this == *sl;
    if (const Simple_Selector* sp = Cast<Simple_Selector>(&rhs)) return *this == *sp;
    if (const Complex_Selector* cs = Cast<Complex_Selector>(&rhs)) return *this == *cs;
    if (const Compound_Selector* ch = Cast<Compound_Selector>(&rhs)) return *this == *ch;
    throw std::runtime_error("invalid selector base classes to compare");
  }

  bool Selector_Schema::operator< (const Selector& rhs) const
  {
    if (const Selector_List* sl = Cast<Selector_List>(&rhs)) return *this < *sl;
    if (const Simple_Selector* sp = Cast<Simple_Selector>(&rhs)) return *this < *sp;
    if (const Complex_Selector* cs = Cast<Complex_Selector>(&rhs)) return *this < *cs;
    if (const Compound_Selector* ch = Cast<Compound_Selector>(&rhs)) return *this < *ch;
    throw std::runtime_error("invalid selector base classes to compare");
  }

  bool Simple_Selector::operator== (const Selector& rhs) const
  {
    if (Simple_Selector_Ptr_Const sp = Cast<Simple_Selector>(&rhs)) return *this == *sp;
    return false;
  }

  bool Simple_Selector::operator< (const Selector& rhs) const
  {
    if (Simple_Selector_Ptr_Const sp = Cast<Simple_Selector>(&rhs)) return *this < *sp;
    return false;
  }

  bool Simple_Selector::operator== (const Simple_Selector& rhs) const
  {
    // solve the double dispatch problem by using RTTI information via dynamic cast
    if (const Pseudo_Selector* lhs = Cast<Pseudo_Selector>(this)) {return *lhs == rhs; }
    else if (const Wrapped_Selector* lhs = Cast<Wrapped_Selector>(this)) {return *lhs == rhs; }
    else if (const Element_Selector* lhs = Cast<Element_Selector>(this)) {return *lhs == rhs; }
    else if (const Attribute_Selector* lhs = Cast<Attribute_Selector>(this)) {return *lhs == rhs; }
    else if (name_ == rhs.name_)
    { return is_ns_eq(rhs); }
    else return false;
  }

  bool Simple_Selector::operator< (const Simple_Selector& rhs) const
  {
    // solve the double dispatch problem by using RTTI information via dynamic cast
    if (const Pseudo_Selector* lhs = Cast<Pseudo_Selector>(this)) {return *lhs < rhs; }
    else if (const Wrapped_Selector* lhs = Cast<Wrapped_Selector>(this)) {return *lhs < rhs; }
    else if (const Element_Selector* lhs = Cast<Element_Selector>(this)) {return *lhs < rhs; }
    else if (const Attribute_Selector* lhs = Cast<Attribute_Selector>(this)) {return *lhs < rhs; }
    if (is_ns_eq(rhs))
    { return name_ < rhs.name_; }
    return ns_ < rhs.ns_;
  }

  bool Selector_List::operator== (const Selector& rhs) const
  {
    // solve the double dispatch problem by using RTTI information via dynamic cast
    if (Selector_List_Ptr_Const sl = Cast<Selector_List>(&rhs)) { return *this == *sl; }
    else if (Complex_Selector_Ptr_Const cpx = Cast<Complex_Selector>(&rhs)) { return *this == *cpx; }
    else if (Compound_Selector_Ptr_Const cpd = Cast<Compound_Selector>(&rhs)) { return *this == *cpd; }
    // no compare method
    return this == &rhs;
  }

  // Selector lists can be compared to comma lists
  bool Selector_List::operator== (const Expression& rhs) const
  {
    // solve the double dispatch problem by using RTTI information via dynamic cast
    if (List_Ptr_Const ls = Cast<List>(&rhs)) { return *ls == *this; }
    if (Selector_Ptr_Const ls = Cast<Selector>(&rhs)) { return *this == *ls; }
    // compare invalid (maybe we should error?)
    return false;
  }

  bool Selector_List::operator== (const Selector_List& rhs) const
  {
    // for array access
    size_t i = 0, n = 0;
    size_t iL = length();
    size_t nL = rhs.length();
    // create temporary vectors and sort them
    std::vector<Complex_Selector_Obj> l_lst = this->elements();
    std::vector<Complex_Selector_Obj> r_lst = rhs.elements();
    std::sort(l_lst.begin(), l_lst.end(), OrderNodes());
    std::sort(r_lst.begin(), r_lst.end(), OrderNodes());
    // process loop
    while (true)
    {
      // first check for valid index
      if (i == iL) return iL == nL;
      else if (n == nL) return iL == nL;
      // the access the vector items
      Complex_Selector_Obj l = l_lst[i];
      Complex_Selector_Obj r = r_lst[n];
      // skip nulls
      if (!l) ++i;
      else if (!r) ++n;
      // do the check
      else if (*l != *r)
      { return false; }
      // advance
      ++i; ++n;
    }
    // there is no break?!
  }

  bool Selector_List::operator< (const Selector& rhs) const
  {
    if (Selector_List_Ptr_Const sp = Cast<Selector_List>(&rhs)) return *this < *sp;
    return false;
  }

  bool Selector_List::operator< (const Selector_List& rhs) const
  {
    size_t l = rhs.length();
    if (length() < l) l = length();
    for (size_t i = 0; i < l; i ++) {
      if (*at(i) < *rhs.at(i)) return true;
    }
    return false;
  }

  Compound_Selector_Ptr Simple_Selector::unify_with(Compound_Selector_Ptr rhs)
  {
    for (size_t i = 0, L = rhs->length(); i < L; ++i)
    { if (to_string() == rhs->at(i)->to_string()) return rhs; }

    // check for pseudo elements because they are always last
    size_t i, L;
    bool found = false;
    if (typeid(*this) == typeid(Pseudo_Selector) || typeid(*this) == typeid(Wrapped_Selector) || typeid(*this) == typeid(Attribute_Selector))
    {
      for (i = 0, L = rhs->length(); i < L; ++i)
      {
        if ((Cast<Pseudo_Selector>((*rhs)[i]) || Cast<Wrapped_Selector>((*rhs)[i]) || Cast<Attribute_Selector>((*rhs)[i])) && (*rhs)[L-1]->is_pseudo_element())
        { found = true; break; }
      }
    }
    else
    {
      for (i = 0, L = rhs->length(); i < L; ++i)
      {
        if (Cast<Pseudo_Selector>((*rhs)[i]) || Cast<Wrapped_Selector>((*rhs)[i]) || Cast<Attribute_Selector>((*rhs)[i]))
        { found = true; break; }
      }
    }
    if (!found)
    {
      rhs->append(this);
    } else {
      rhs->elements().insert(rhs->elements().begin() + i, this);
    }
    return rhs;
  }

  Simple_Selector_Ptr Element_Selector::unify_with(Simple_Selector_Ptr rhs)
  {
    // check if ns can be extended
    // true for no ns or universal
    if (has_universal_ns())
    {
      // but dont extend with universal
      // true for valid ns and universal
      if (!rhs->is_universal_ns())
      {
        // overwrite the name if star is given as name
        if (this->name() == "*") { this->name(rhs->name()); }
        // now overwrite the namespace name and flag
        this->ns(rhs->ns()); this->has_ns(rhs->has_ns());
        // return copy
        return this;
      }
    }
    // namespace may changed, check the name now
    // overwrite star (but not with another star)
    if (name() == "*" && rhs->name() != "*")
    {
      // simply set the new name
      this->name(rhs->name());
      // return copy
      return this;
    }
    // return original
    return this;
  }

  Compound_Selector_Ptr Element_Selector::unify_with(Compound_Selector_Ptr rhs)
  {
    // TODO: handle namespaces

    // if the rhs is empty, just return a copy of this
    if (rhs->length() == 0) {
      rhs->append(this);
      return rhs;
    }

    Simple_Selector_Ptr rhs_0 = rhs->at(0);
    // otherwise, this is a tag name
    if (name() == "*")
    {
      if (typeid(*rhs_0) == typeid(Element_Selector))
      {
        // if rhs is universal, just return this tagname + rhs's qualifiers
        Element_Selector_Ptr ts = Cast<Element_Selector>(rhs_0);
        rhs->at(0) = this->unify_with(ts);
        return rhs;
      }
      else if (Cast<Class_Selector>(rhs_0) || Cast<Id_Selector>(rhs_0)) {
        // qualifier is `.class`, so we can prefix with `ns|*.class`
        if (has_ns() && !rhs_0->has_ns()) {
          if (ns() != "*") rhs->elements().insert(rhs->begin(), this);
        }
        return rhs;
      }


      return rhs;
    }

    if (typeid(*rhs_0) == typeid(Element_Selector))
    {
      // if rhs is universal, just return this tagname + rhs's qualifiers
      if (rhs_0->name() != "*" && rhs_0->ns() != "*" && rhs_0->name() != name()) return 0;
      // otherwise create new compound and unify first simple selector
      rhs->at(0) = this->unify_with(rhs_0);
      return rhs;

    }
    // else it's a tag name and a bunch of qualifiers -- just append them
    if (name() != "*") rhs->elements().insert(rhs->begin(), this);
    return rhs;
  }

  Compound_Selector_Ptr Class_Selector::unify_with(Compound_Selector_Ptr rhs)
  {
    rhs->has_line_break(has_line_break());
    return Simple_Selector::unify_with(rhs);
  }

  Compound_Selector_Ptr Id_Selector::unify_with(Compound_Selector_Ptr rhs)
  {
    for (size_t i = 0, L = rhs->length(); i < L; ++i)
    {
      if (Id_Selector_Ptr sel = Cast<Id_Selector>(rhs->at(i))) {
        if (sel->name() != name()) return 0;
      }
    }
    rhs->has_line_break(has_line_break());
    return Simple_Selector::unify_with(rhs);
  }

  Compound_Selector_Ptr Pseudo_Selector::unify_with(Compound_Selector_Ptr rhs)
  {
    if (is_pseudo_element())
    {
      for (size_t i = 0, L = rhs->length(); i < L; ++i)
      {
        if (Pseudo_Selector_Ptr sel = Cast<Pseudo_Selector>(rhs->at(i))) {
          if (sel->is_pseudo_element() && sel->name() != name()) return 0;
        }
      }
    }
    return Simple_Selector::unify_with(rhs);
  }

  bool Attribute_Selector::operator< (const Attribute_Selector& rhs) const
  {
    if (is_ns_eq(rhs)) {
      if (name() == rhs.name()) {
        if (matcher() == rhs.matcher()) {
          bool no_lhs_val = value().isNull();
          bool no_rhs_val = rhs.value().isNull();
          if (no_lhs_val && no_rhs_val) return false; // equal
          else if (no_lhs_val) return true; // lhs is null
          else if (no_rhs_val) return false; // rhs is null
          return *value() < *rhs.value(); // both are given
        } else { return matcher() < rhs.matcher(); }
      } else { return name() < rhs.name(); }
    } else { return ns() < rhs.ns(); }
  }

  bool Attribute_Selector::operator< (const Simple_Selector& rhs) const
  {
    if (Attribute_Selector_Ptr_Const w = Cast<Attribute_Selector>(&rhs))
    {
      return *this < *w;
    }
    if (is_ns_eq(rhs))
    { return name() < rhs.name(); }
    return ns() < rhs.ns();
  }

  bool Attribute_Selector::operator== (const Attribute_Selector& rhs) const
  {
    // get optional value state
    bool no_lhs_val = value().isNull();
    bool no_rhs_val = rhs.value().isNull();
    // both are null, therefore equal
    if (no_lhs_val && no_rhs_val) {
      return (name() == rhs.name())
        && (matcher() == rhs.matcher())
        && (is_ns_eq(rhs));
    }
    // both are defined, evaluate
    if (no_lhs_val == no_rhs_val) {
      return (name() == rhs.name())
        && (matcher() == rhs.matcher())
        && (is_ns_eq(rhs))
        && (*value() == *rhs.value());
    }
    // not equal
    return false;

  }

  bool Attribute_Selector::operator== (const Simple_Selector& rhs) const
  {
    if (Attribute_Selector_Ptr_Const w = Cast<Attribute_Selector>(&rhs))
    {
      return is_ns_eq(rhs) &&
             name() == rhs.name() &&
             *this == *w;
    }
    return false;
  }

  bool Element_Selector::operator< (const Element_Selector& rhs) const
  {
    if (is_ns_eq(rhs))
    { return name() < rhs.name(); }
    return ns() < rhs.ns();
  }

  bool Element_Selector::operator< (const Simple_Selector& rhs) const
  {
    if (Element_Selector_Ptr_Const w = Cast<Element_Selector>(&rhs))
    {
      return *this < *w;
    }
    if (is_ns_eq(rhs))
    { return name() < rhs.name(); }
    return ns() < rhs.ns();
  }

  bool Element_Selector::operator== (const Element_Selector& rhs) const
  {
    return is_ns_eq(rhs) &&
           name() == rhs.name();
  }

  bool Element_Selector::operator== (const Simple_Selector& rhs) const
  {
    if (Element_Selector_Ptr_Const w = Cast<Element_Selector>(&rhs))
    {
      return is_ns_eq(rhs) &&
             name() == rhs.name() &&
             *this == *w;
    }
    return false;
  }

  bool Pseudo_Selector::operator== (const Pseudo_Selector& rhs) const
  {
    if (is_ns_eq(rhs) && name() == rhs.name())
    {
      String_Obj lhs_ex = expression();
      String_Obj rhs_ex = rhs.expression();
      if (rhs_ex && lhs_ex) return *lhs_ex == *rhs_ex;
      else return lhs_ex.ptr() == rhs_ex.ptr();
    }
    else return false;
  }

  bool Pseudo_Selector::operator== (const Simple_Selector& rhs) const
  {
    if (Pseudo_Selector_Ptr_Const w = Cast<Pseudo_Selector>(&rhs))
    {
      return *this == *w;
    }
    return is_ns_eq(rhs) &&
           name() == rhs.name();
  }

  bool Pseudo_Selector::operator< (const Pseudo_Selector& rhs) const
  {
    if (is_ns_eq(rhs) && name() == rhs.name())
    {
      String_Obj lhs_ex = expression();
      String_Obj rhs_ex = rhs.expression();
      if (rhs_ex && lhs_ex) return *lhs_ex < *rhs_ex;
      else return lhs_ex.ptr() < rhs_ex.ptr();
    }
    if (is_ns_eq(rhs))
    { return name() < rhs.name(); }
    return ns() < rhs.ns();
  }

  bool Pseudo_Selector::operator< (const Simple_Selector& rhs) const
  {
    if (Pseudo_Selector_Ptr_Const w = Cast<Pseudo_Selector>(&rhs))
    {
      return *this < *w;
    }
    if (is_ns_eq(rhs))
    { return name() < rhs.name(); }
    return ns() < rhs.ns();
  }

  bool Wrapped_Selector::operator== (const Wrapped_Selector& rhs) const
  {
    if (is_ns_eq(rhs) && name() == rhs.name())
    { return *(selector()) == *(rhs.selector()); }
    else return false;
  }

  bool Wrapped_Selector::operator== (const Simple_Selector& rhs) const
  {
    if (Wrapped_Selector_Ptr_Const w = Cast<Wrapped_Selector>(&rhs))
    {
      return *this == *w;
    }
    return is_ns_eq(rhs) &&
           name() == rhs.name();
  }

  bool Wrapped_Selector::operator< (const Wrapped_Selector& rhs) const
  {
    if (is_ns_eq(rhs) && name() == rhs.name())
    { return *(selector()) < *(rhs.selector()); }
    if (is_ns_eq(rhs))
    { return name() < rhs.name(); }
    return ns() < rhs.ns();
  }

  bool Wrapped_Selector::operator< (const Simple_Selector& rhs) const
  {
    if (Wrapped_Selector_Ptr_Const w = Cast<Wrapped_Selector>(&rhs))
    {
      return *this < *w;
    }
    if (is_ns_eq(rhs))
    { return name() < rhs.name(); }
    return ns() < rhs.ns();
  }

  bool Wrapped_Selector::is_superselector_of(Wrapped_Selector_Obj sub)
  {
    if (this->name() != sub->name()) return false;
    if (this->name() == ":current") return false;
    if (Selector_List_Obj rhs_list = Cast<Selector_List>(sub->selector())) {
      if (Selector_List_Obj lhs_list = Cast<Selector_List>(selector())) {
        return lhs_list->is_superselector_of(rhs_list);
      }
    }
    coreError("is_superselector expected a Selector_List", sub->pstate());
    return false;
  }

  bool Compound_Selector::is_superselector_of(Selector_List_Obj rhs, std::string wrapped)
  {
    for (Complex_Selector_Obj item : rhs->elements()) {
      if (is_superselector_of(item, wrapped)) return true;
    }
    return false;
  }

  bool Compound_Selector::is_superselector_of(Complex_Selector_Obj rhs, std::string wrapped)
  {
    if (rhs->head()) return is_superselector_of(rhs->head(), wrapped);
    return false;
  }

  bool Compound_Selector::is_superselector_of(Compound_Selector_Obj rhs, std::string wrapping)
  {
    Compound_Selector_Ptr lhs = this;
    Simple_Selector_Ptr lbase = lhs->base();
    Simple_Selector_Ptr rbase = rhs->base();

    // Check if pseudo-elements are the same between the selectors

    std::set<std::string> lpsuedoset, rpsuedoset;
    for (size_t i = 0, L = length(); i < L; ++i)
    {
      if ((*this)[i]->is_pseudo_element()) {
        std::string pseudo((*this)[i]->to_string());
        pseudo = pseudo.substr(pseudo.find_first_not_of(":")); // strip off colons to ensure :after matches ::after since ruby sass is forgiving
        lpsuedoset.insert(pseudo);
      }
    }
    for (size_t i = 0, L = rhs->length(); i < L; ++i)
    {
      if ((*rhs)[i]->is_pseudo_element()) {
        std::string pseudo((*rhs)[i]->to_string());
        pseudo = pseudo.substr(pseudo.find_first_not_of(":")); // strip off colons to ensure :after matches ::after since ruby sass is forgiving
        rpsuedoset.insert(pseudo);
      }
    }
    if (lpsuedoset != rpsuedoset) {
      return false;
    }

    // would like to replace this without stringification
    // https://github.com/sass/sass/issues/2229
    // SimpleSelectorSet lset, rset;
    std::set<std::string> lset, rset;

    if (lbase && rbase)
    {
      if (lbase->to_string() == rbase->to_string()) {
        for (size_t i = 1, L = length(); i < L; ++i)
        { lset.insert((*this)[i]->to_string()); }
        for (size_t i = 1, L = rhs->length(); i < L; ++i)
        { rset.insert((*rhs)[i]->to_string()); }
        return includes(rset.begin(), rset.end(), lset.begin(), lset.end());
      }
      return false;
    }

    for (size_t i = 0, iL = length(); i < iL; ++i)
    {
      Selector_Obj wlhs = (*this)[i];
      // very special case for wrapped matches selector
      if (Wrapped_Selector_Obj wrapped = Cast<Wrapped_Selector>(wlhs)) {
        if (wrapped->name() == ":not") {
          if (Selector_List_Obj not_list = Cast<Selector_List>(wrapped->selector())) {
            if (not_list->is_superselector_of(rhs, wrapped->name())) return false;
          } else {
            throw std::runtime_error("wrapped not selector is not a list");
          }
        }
        if (wrapped->name() == ":matches" || wrapped->name() == ":-moz-any") {
          wlhs = wrapped->selector();
          if (Selector_List_Obj list = Cast<Selector_List>(wrapped->selector())) {
            if (Compound_Selector_Obj comp = Cast<Compound_Selector>(rhs)) {
              if (!wrapping.empty() && wrapping != wrapped->name()) return false;
              if (wrapping.empty() || wrapping != wrapped->name()) {;
                if (list->is_superselector_of(comp, wrapped->name())) return true;
              }
            }
          }
        }
        Simple_Selector_Ptr rhs_sel = NULL;
        if (rhs->elements().size() > i) rhs_sel = (*rhs)[i];
        if (Wrapped_Selector_Ptr wrapped_r = Cast<Wrapped_Selector>(rhs_sel)) {
          if (wrapped->name() == wrapped_r->name()) {
          if (wrapped->is_superselector_of(wrapped_r)) {
             continue;
          }}
        }
      }
      // match from here on as strings
      lset.insert(wlhs->to_string());
    }

    for (size_t n = 0, nL = rhs->length(); n < nL; ++n)
    {
      Selector_Obj r = (*rhs)[n];
      if (Wrapped_Selector_Obj wrapped = Cast<Wrapped_Selector>(r)) {
        if (wrapped->name() == ":not") {
          if (Selector_List_Obj ls = Cast<Selector_List>(wrapped->selector())) {
            ls->remove_parent_selectors();
            if (is_superselector_of(ls, wrapped->name())) return false;
          }
        }
        if (wrapped->name() == ":matches" || wrapped->name() == ":-moz-any") {
          if (!wrapping.empty()) {
            if (wrapping != wrapped->name()) return false;
          }
          if (Selector_List_Obj ls = Cast<Selector_List>(wrapped->selector())) {
            ls->remove_parent_selectors();
            return (is_superselector_of(ls, wrapped->name()));
          }
        }
      }
      rset.insert(r->to_string());
    }

    //for (auto l : lset) { cerr << "l: " << l << endl; }
    //for (auto r : rset) { cerr << "r: " << r << endl; }

    if (lset.empty()) return true;
    // return true if rset contains all the elements of lset
    return includes(rset.begin(), rset.end(), lset.begin(), lset.end());

  }

  // create complex selector (ancestor of) from compound selector
  Complex_Selector_Obj Compound_Selector::to_complex()
  {
    // create an intermediate complex selector
    return SASS_MEMORY_NEW(Complex_Selector,
                           pstate(),
                           Complex_Selector::ANCESTOR_OF,
                           this,
                           0);
  }

  Selector_List_Ptr Complex_Selector::unify_with(Complex_Selector_Ptr other)
  {

    // get last tails (on the right side)
    Complex_Selector_Obj l_last = this->last();
    Complex_Selector_Obj r_last = other->last();

    // check valid pointers (assertion)
    SASS_ASSERT(l_last, "lhs is null");
    SASS_ASSERT(r_last, "rhs is null");

    // Not sure about this check, but closest way I could check
    // was to see if this is a ruby 'SimpleSequence' equivalent.
    // It seems to do the job correctly as some specs react to this
    if (l_last->combinator() != Combinator::ANCESTOR_OF) return 0;
    if (r_last->combinator() != Combinator::ANCESTOR_OF ) return 0;

    // get the headers for the last tails
    Compound_Selector_Obj l_last_head = l_last->head();
    Compound_Selector_Obj r_last_head = r_last->head();

    // check valid head pointers (assertion)
    SASS_ASSERT(l_last_head, "lhs head is null");
    SASS_ASSERT(r_last_head, "rhs head is null");

    // get the unification of the last compound selectors
    Compound_Selector_Obj unified = r_last_head->unify_with(l_last_head);

    // abort if we could not unify heads
    if (unified == 0) return 0;

    // check for universal (star: `*`) selector
    bool is_universal = l_last_head->is_universal() ||
                        r_last_head->is_universal();

    if (is_universal)
    {
      // move the head
      l_last->head(0);
      r_last->head(unified);
    }

    // create nodes from both selectors
    Node lhsNode = complexSelectorToNode(this);
    Node rhsNode = complexSelectorToNode(other);

    // overwrite universal base
    if (!is_universal)
    {
      // create some temporaries to convert to node
      Complex_Selector_Obj fake = unified->to_complex();
      Node unified_node = complexSelectorToNode(fake);
      // add to permutate the list?
      rhsNode.plus(unified_node);
    }

    // do some magic we inherit from node and extend
    Node node = subweave(lhsNode, rhsNode);
    Selector_List_Obj result = SASS_MEMORY_NEW(Selector_List, pstate());
    NodeDequePtr col = node.collection(); // move from collection to list
    for (NodeDeque::iterator it = col->begin(), end = col->end(); it != end; it++)
    { result->append(nodeToComplexSelector(Node::naiveTrim(*it))); }

    // only return if list has some entries
    return result->length() ? result.detach() : 0;

  }

  bool Compound_Selector::operator== (const Compound_Selector& rhs) const
  {
    // for array access
    size_t i = 0, n = 0;
    size_t iL = length();
    size_t nL = rhs.length();
    // create temporary vectors and sort them
    std::vector<Simple_Selector_Obj> l_lst = this->elements();
    std::vector<Simple_Selector_Obj> r_lst = rhs.elements();
    std::sort(l_lst.begin(), l_lst.end(), OrderNodes());
    std::sort(r_lst.begin(), r_lst.end(), OrderNodes());
    // process loop
    while (true)
    {
      // first check for valid index
      if (i == iL) return iL == nL;
      else if (n == nL) return iL == nL;
      // the access the vector items
      Simple_Selector_Obj l = l_lst[i];
      Simple_Selector_Obj r = r_lst[n];
      // skip nulls
      if (!l) ++i;
      if (!r) ++n;
      // do the check now
      else if (*l != *r)
      { return false; }
      // advance now
      ++i; ++n;
    }
    // there is no break?!
  }

  bool Complex_Selector::is_superselector_of(Compound_Selector_Obj rhs, std::string wrapping)
  {
    return last()->head() && last()->head()->is_superselector_of(rhs, wrapping);
  }

  bool Complex_Selector::is_superselector_of(Complex_Selector_Obj rhs, std::string wrapping)
  {
    Complex_Selector_Ptr lhs = this;
    // check for selectors with leading or trailing combinators
    if (!lhs->head() || !rhs->head())
    { return false; }
    Complex_Selector_Obj l_innermost = lhs->innermost();
    if (l_innermost->combinator() != Complex_Selector::ANCESTOR_OF)
    { return false; }
    Complex_Selector_Obj r_innermost = rhs->innermost();
    if (r_innermost->combinator() != Complex_Selector::ANCESTOR_OF)
    { return false; }
    // more complex (i.e., longer) selectors are always more specific
    size_t l_len = lhs->length(), r_len = rhs->length();
    if (l_len > r_len)
    { return false; }

    if (l_len == 1)
    { return lhs->head()->is_superselector_of(rhs->last()->head(), wrapping); }

    // we have to look one tail deeper, since we cary the
    // combinator around for it (which is important here)
    if (rhs->tail() && lhs->tail() && combinator() != Complex_Selector::ANCESTOR_OF) {
      Complex_Selector_Obj lhs_tail = lhs->tail();
      Complex_Selector_Obj rhs_tail = rhs->tail();
      if (lhs_tail->combinator() != rhs_tail->combinator()) return false;
      if (lhs_tail->head() && !rhs_tail->head()) return false;
      if (!lhs_tail->head() && rhs_tail->head()) return false;
      if (lhs_tail->head() && rhs_tail->head()) {
        if (!lhs_tail->head()->is_superselector_of(rhs_tail->head())) return false;
      }
    }

    bool found = false;
    Complex_Selector_Obj marker = rhs;
    for (size_t i = 0, L = rhs->length(); i < L; ++i) {
      if (i == L-1)
      { return false; }
      if (lhs->head() && marker->head() && lhs->head()->is_superselector_of(marker->head(), wrapping))
      { found = true; break; }
      marker = marker->tail();
    }
    if (!found)
    { return false; }

    /*
      Hmm, I hope I have the logic right:

      if lhs has a combinator:
        if !(marker has a combinator) return false
        if !(lhs.combinator == '~' ? marker.combinator != '>' : lhs.combinator == marker.combinator) return false
        return lhs.tail-without-innermost.is_superselector_of(marker.tail-without-innermost)
      else if marker has a combinator:
        if !(marker.combinator == ">") return false
        return lhs.tail.is_superselector_of(marker.tail)
      else
        return lhs.tail.is_superselector_of(marker.tail)
    */
    if (lhs->combinator() != Complex_Selector::ANCESTOR_OF)
    {
      if (marker->combinator() == Complex_Selector::ANCESTOR_OF)
      { return false; }
      if (!(lhs->combinator() == Complex_Selector::PRECEDES ? marker->combinator() != Complex_Selector::PARENT_OF : lhs->combinator() == marker->combinator()))
      { return false; }
      return lhs->tail()->is_superselector_of(marker->tail());
    }
    else if (marker->combinator() != Complex_Selector::ANCESTOR_OF)
    {
      if (marker->combinator() != Complex_Selector::PARENT_OF)
      { return false; }
      return lhs->tail()->is_superselector_of(marker->tail());
    }
    return lhs->tail()->is_superselector_of(marker->tail());
  }

  size_t Complex_Selector::length() const
  {
    // TODO: make this iterative
    if (!tail()) return 1;
    return 1 + tail()->length();
  }

  // append another complex selector at the end
  // check if we need to append some headers
  // then we need to check for the combinator
  // only then we can safely set the new tail
  void Complex_Selector::append(Complex_Selector_Obj ss, Backtraces& traces)
  {

    Complex_Selector_Obj t = ss->tail();
    Combinator c = ss->combinator();
    String_Obj r = ss->reference();
    Compound_Selector_Obj h = ss->head();

    if (ss->has_line_feed()) has_line_feed(true);
    if (ss->has_line_break()) has_line_break(true);

    // append old headers
    if (h && h->length()) {
      if (last()->combinator() != ANCESTOR_OF && c != ANCESTOR_OF) {
        traces.push_back(Backtrace(pstate()));
        throw Exception::InvalidParent(this, traces, ss);
      } else if (last()->head_ && last()->head_->length()) {
        Compound_Selector_Obj rh = last()->head();
        size_t i;
        size_t L = h->length();
        if (Cast<Element_Selector>(h->first())) {
          if (Class_Selector_Ptr cs = Cast<Class_Selector>(rh->last())) {
            Class_Selector_Ptr sqs = SASS_MEMORY_COPY(cs);
            sqs->name(sqs->name() + (*h)[0]->name());
            sqs->pstate((*h)[0]->pstate());
            (*rh)[rh->length()-1] = sqs;
            rh->pstate(h->pstate());
            for (i = 1; i < L; ++i) rh->append((*h)[i]);
          } else if (Id_Selector_Ptr is = Cast<Id_Selector>(rh->last())) {
            Id_Selector_Ptr sqs = SASS_MEMORY_COPY(is);
            sqs->name(sqs->name() + (*h)[0]->name());
            sqs->pstate((*h)[0]->pstate());
            (*rh)[rh->length()-1] = sqs;
            rh->pstate(h->pstate());
            for (i = 1; i < L; ++i) rh->append((*h)[i]);
          } else if (Element_Selector_Ptr ts = Cast<Element_Selector>(rh->last())) {
            Element_Selector_Ptr tss = SASS_MEMORY_COPY(ts);
            tss->name(tss->name() + (*h)[0]->name());
            tss->pstate((*h)[0]->pstate());
            (*rh)[rh->length()-1] = tss;
            rh->pstate(h->pstate());
            for (i = 1; i < L; ++i) rh->append((*h)[i]);
          } else if (Placeholder_Selector_Ptr ps = Cast<Placeholder_Selector>(rh->last())) {
            Placeholder_Selector_Ptr pss = SASS_MEMORY_COPY(ps);
            pss->name(pss->name() + (*h)[0]->name());
            pss->pstate((*h)[0]->pstate());
            (*rh)[rh->length()-1] = pss;
            rh->pstate(h->pstate());
            for (i = 1; i < L; ++i) rh->append((*h)[i]);
          } else {
            last()->head_->concat(h);
          }
        } else {
          last()->head_->concat(h);
        }
      } else if (last()->head_) {
        last()->head_->concat(h);
      }
    } else {
      // std::cerr << "has no or empty head\n";
    }

    if (last()) {
      if (last()->combinator() != ANCESTOR_OF && c != ANCESTOR_OF) {
        Complex_Selector_Ptr inter = SASS_MEMORY_NEW(Complex_Selector, pstate());
        inter->reference(r);
        inter->combinator(c);
        inter->tail(t);
        last()->tail(inter);
      } else {
        if (last()->combinator() == ANCESTOR_OF) {
          last()->combinator(c);
          last()->reference(r);
        }
        last()->tail(t);
      }
    }

  }

  Selector_List_Obj Selector_List::eval(Eval& eval)
  {
    Selector_List_Obj list = schema() ?
      eval(schema()) : eval(this);
    list->schema(schema());
    return list;
  }

  Selector_List_Ptr Selector_List::resolve_parent_refs(std::vector<Selector_List_Obj>& pstack, Backtraces& traces, bool implicit_parent)
  {
    if (!this->has_parent_ref()) return this;
    Selector_List_Ptr ss = SASS_MEMORY_NEW(Selector_List, pstate());
    Selector_List_Ptr ps = pstack.back();
    for (size_t pi = 0, pL = ps->length(); pi < pL; ++pi) {
      for (size_t si = 0, sL = this->length(); si < sL; ++si) {
        Selector_List_Obj rv = at(si)->resolve_parent_refs(pstack, traces, implicit_parent);
        ss->concat(rv);
      }
    }
    return ss;
  }

  Selector_List_Ptr Complex_Selector::resolve_parent_refs(std::vector<Selector_List_Obj>& pstack, Backtraces& traces, bool implicit_parent)
  {
    Complex_Selector_Obj tail = this->tail();
    Compound_Selector_Obj head = this->head();
    Selector_List_Ptr parents = pstack.back();

    if (!this->has_real_parent_ref() && !implicit_parent) {
      Selector_List_Ptr retval = SASS_MEMORY_NEW(Selector_List, pstate());
      retval->append(this);
      return retval;
    }

    // first resolve_parent_refs the tail (which may return an expanded list)
    Selector_List_Obj tails = tail ? tail->resolve_parent_refs(pstack, traces, implicit_parent) : 0;

    if (head && head->length() > 0) {

      Selector_List_Obj retval;
      // we have a parent selector in a simple compound list
      // mix parent complex selector into the compound list
      if (Cast<Parent_Selector>((*head)[0])) {
        retval = SASS_MEMORY_NEW(Selector_List, pstate());

        // it turns out that real parent references reach
        // across @at-root rules, which comes unexpected
        if (parents == NULL && head->has_real_parent_ref()) {
          int i = pstack.size() - 1;
          while (!parents && i > -1) {
            parents = pstack.at(i--);
          }
        }

        if (parents && parents->length()) {
          if (tails && tails->length() > 0) {
            for (size_t n = 0, nL = tails->length(); n < nL; ++n) {
              for (size_t i = 0, iL = parents->length(); i < iL; ++i) {
                Complex_Selector_Obj t = (*tails)[n];
                Complex_Selector_Obj parent = (*parents)[i];
                Complex_Selector_Obj s = SASS_MEMORY_CLONE(parent);
                Complex_Selector_Obj ss = SASS_MEMORY_CLONE(this);
                ss->tail(t ? SASS_MEMORY_CLONE(t) : NULL);
                Compound_Selector_Obj h = SASS_MEMORY_COPY(head_);
                // remove parent selector from sequence
                if (h->length()) {
                  h->erase(h->begin());
                  ss->head(h);
                } else {
                  ss->head(NULL);
                }
                // adjust for parent selector (1 char)
                // if (h->length()) {
                //   ParserState state(h->at(0)->pstate());
                //   state.offset.column += 1;
                //   state.column -= 1;
                //   (*h)[0]->pstate(state);
                // }
                // keep old parser state
                s->pstate(pstate());
                // append new tail
                s->append(ss, traces);
                retval->append(s);
              }
            }
          }
          // have no tails but parents
          // loop above is inside out
          else {
            for (size_t i = 0, iL = parents->length(); i < iL; ++i) {
              Complex_Selector_Obj parent = (*parents)[i];
              Complex_Selector_Obj s = SASS_MEMORY_CLONE(parent);
              Complex_Selector_Obj ss = SASS_MEMORY_CLONE(this);
              // this is only if valid if the parent has no trailing op
              // otherwise we cannot append more simple selectors to head
              if (parent->last()->combinator() != ANCESTOR_OF) {
                traces.push_back(Backtrace(pstate()));
                throw Exception::InvalidParent(parent, traces, ss);
              }
              ss->tail(tail ? SASS_MEMORY_CLONE(tail) : NULL);
              Compound_Selector_Obj h = SASS_MEMORY_COPY(head_);
              // remove parent selector from sequence
              if (h->length()) {
                h->erase(h->begin());
                ss->head(h);
              } else {
                ss->head(NULL);
              }
              // \/ IMO ruby sass bug \/
              ss->has_line_feed(false);
              // adjust for parent selector (1 char)
              // if (h->length()) {
              //   ParserState state(h->at(0)->pstate());
              //   state.offset.column += 1;
              //   state.column -= 1;
              //   (*h)[0]->pstate(state);
              // }
              // keep old parser state
              s->pstate(pstate());
              // append new tail
              s->append(ss, traces);
              retval->append(s);
            }
          }
        }
        // have no parent but some tails
        else {
          if (tails && tails->length() > 0) {
            for (size_t n = 0, nL = tails->length(); n < nL; ++n) {
              Complex_Selector_Obj cpy = SASS_MEMORY_CLONE(this);
              cpy->tail(SASS_MEMORY_CLONE(tails->at(n)));
              cpy->head(SASS_MEMORY_NEW(Compound_Selector, head->pstate()));
              for (size_t i = 1, L = this->head()->length(); i < L; ++i)
                cpy->head()->append((*this->head())[i]);
              if (!cpy->head()->length()) cpy->head(0);
              retval->append(cpy->skip_empty_reference());
            }
          }
          // have no parent nor tails
          else {
            Complex_Selector_Obj cpy = SASS_MEMORY_CLONE(this);
            cpy->head(SASS_MEMORY_NEW(Compound_Selector, head->pstate()));
            for (size_t i = 1, L = this->head()->length(); i < L; ++i)
              cpy->head()->append((*this->head())[i]);
            if (!cpy->head()->length()) cpy->head(0);
            retval->append(cpy->skip_empty_reference());
          }
        }
      }
      // no parent selector in head
      else {
        retval = this->tails(tails);
      }

      for (Simple_Selector_Obj ss : head->elements()) {
        if (Wrapped_Selector_Ptr ws = Cast<Wrapped_Selector>(ss)) {
          if (Selector_List_Ptr sl = Cast<Selector_List>(ws->selector())) {
            if (parents) ws->selector(sl->resolve_parent_refs(pstack, traces, implicit_parent));
          }
        }
      }

      return retval.detach();

    }
    // has no head
    return this->tails(tails);
  }

  Selector_List_Ptr Complex_Selector::tails(Selector_List_Ptr tails)
  {
    Selector_List_Ptr rv = SASS_MEMORY_NEW(Selector_List, pstate_);
    if (tails && tails->length()) {
      for (size_t i = 0, iL = tails->length(); i < iL; ++i) {
        Complex_Selector_Obj pr = SASS_MEMORY_CLONE(this);
        pr->tail(tails->at(i));
        rv->append(pr);
      }
    }
    else {
      rv->append(this);
    }
    return rv;
  }

  // return the last tail that is defined
  Complex_Selector_Obj Complex_Selector::first()
  {
    // declare variables used in loop
    Complex_Selector_Obj cur = this;
    Compound_Selector_Obj head;
    // processing loop
    while (cur)
    {
      // get the head
      head = cur->head_;
      // abort (and return) if it is not a parent selector
      if (!head || head->length() != 1 || !Cast<Parent_Selector>((*head)[0])) {
        break;
      }
      // advance to next
      cur = cur->tail_;
    }
    // result
    return cur;
  }

  // return the last tail that is defined
  Complex_Selector_Obj Complex_Selector::last()
  {
    Complex_Selector_Ptr cur = this;
    Complex_Selector_Ptr nxt = cur;
    // loop until last
    while (nxt) {
      cur = nxt;
      nxt = cur->tail();
    }
    return cur;
  }

  Complex_Selector::Combinator Complex_Selector::clear_innermost()
  {
    Combinator c;
    if (!tail() || tail()->tail() == 0)
    { c = combinator(); combinator(ANCESTOR_OF); tail(0); }
    else
    { c = tail()->clear_innermost(); }
    return c;
  }

  void Complex_Selector::set_innermost(Complex_Selector_Obj val, Combinator c)
  {
    if (!tail())
    { tail(val); combinator(c); }
    else
    { tail()->set_innermost(val, c); }
  }

  void Complex_Selector::cloneChildren()
  {
    if (head()) head(SASS_MEMORY_CLONE(head()));
    if (tail()) tail(SASS_MEMORY_CLONE(tail()));
  }

  void Compound_Selector::cloneChildren()
  {
    for (size_t i = 0, l = length(); i < l; i++) {
      at(i) = SASS_MEMORY_CLONE(at(i));
    }
  }

  void Selector_List::cloneChildren()
  {
    for (size_t i = 0, l = length(); i < l; i++) {
      at(i) = SASS_MEMORY_CLONE(at(i));
    }
  }

  void Wrapped_Selector::cloneChildren()
  {
    selector(SASS_MEMORY_CLONE(selector()));
  }

  // remove parent selector references
  // basically unwraps parsed selectors
  void Selector_List::remove_parent_selectors()
  {
    // Check every rhs selector against left hand list
    for(size_t i = 0, L = length(); i < L; ++i) {
      if (!(*this)[i]->head()) continue;
      if ((*this)[i]->head()->is_empty_reference()) {
        // simply move to the next tail if we have "no" combinator
        if ((*this)[i]->combinator() == Complex_Selector::ANCESTOR_OF) {
          if ((*this)[i]->tail()) {
            if ((*this)[i]->has_line_feed()) {
              (*this)[i]->tail()->has_line_feed(true);
            }
            (*this)[i] = (*this)[i]->tail();
          }
        }
        // otherwise remove the first item from head
        else {
          (*this)[i]->head()->erase((*this)[i]->head()->begin());
        }
      }
    }
  }

  size_t Wrapped_Selector::hash()
  {
    if (hash_ == 0) {
      hash_combine(hash_, Simple_Selector::hash());
      if (selector_) hash_combine(hash_, selector_->hash());
    }
    return hash_;
  }
  bool Wrapped_Selector::has_parent_ref() const {
    // if (has_reference()) return true;
    if (!selector()) return false;
    return selector()->has_parent_ref();
  }
  bool Wrapped_Selector::has_real_parent_ref() const {
    // if (has_reference()) return true;
    if (!selector()) return false;
    return selector()->has_real_parent_ref();
  }
  unsigned long Wrapped_Selector::specificity() const
  {
    return selector_ ? selector_->specificity() : 0;
  }


  bool Selector_List::has_parent_ref() const
  {
    for (Complex_Selector_Obj s : elements()) {
      if (s && s->has_parent_ref()) return true;
    }
    return false;
  }

  bool Selector_List::has_real_parent_ref() const
  {
    for (Complex_Selector_Obj s : elements()) {
      if (s && s->has_real_parent_ref()) return true;
    }
    return false;
  }

  bool Selector_Schema::has_parent_ref() const
  {
    if (String_Schema_Obj schema = Cast<String_Schema>(contents())) {
      return schema->length() > 0 && Cast<Parent_Selector>(schema->at(0)) != NULL;
    }
    return false;
  }

  bool Selector_Schema::has_real_parent_ref() const
  {
    if (String_Schema_Obj schema = Cast<String_Schema>(contents())) {
      Parent_Selector_Obj p = Cast<Parent_Selector>(schema->at(0));
      return schema->length() > 0 && p && p->is_real_parent_ref();
    }
    return false;
  }

  void Selector_List::adjust_after_pushing(Complex_Selector_Obj c)
  {
    // if (c->has_reference())   has_reference(true);
  }

  // it's a superselector if every selector of the right side
  // list is a superselector of the given left side selector
  bool Complex_Selector::is_superselector_of(Selector_List_Obj sub, std::string wrapping)
  {
    // Check every rhs selector against left hand list
    for(size_t i = 0, L = sub->length(); i < L; ++i) {
      if (!is_superselector_of((*sub)[i], wrapping)) return false;
    }
    return true;
  }

  // it's a superselector if every selector of the right side
  // list is a superselector of the given left side selector
  bool Selector_List::is_superselector_of(Selector_List_Obj sub, std::string wrapping)
  {
    // Check every rhs selector against left hand list
    for(size_t i = 0, L = sub->length(); i < L; ++i) {
      if (!is_superselector_of((*sub)[i], wrapping)) return false;
    }
    return true;
  }

  // it's a superselector if every selector on the right side
  // is a superselector of any one of the left side selectors
  bool Selector_List::is_superselector_of(Compound_Selector_Obj sub, std::string wrapping)
  {
    // Check every lhs selector against right hand
    for(size_t i = 0, L = length(); i < L; ++i) {
      if ((*this)[i]->is_superselector_of(sub, wrapping)) return true;
    }
    return false;
  }

  // it's a superselector if every selector on the right side
  // is a superselector of any one of the left side selectors
  bool Selector_List::is_superselector_of(Complex_Selector_Obj sub, std::string wrapping)
  {
    // Check every lhs selector against right hand
    for(size_t i = 0, L = length(); i < L; ++i) {
      if ((*this)[i]->is_superselector_of(sub)) return true;
    }
    return false;
  }

  Selector_List_Ptr Selector_List::unify_with(Selector_List_Ptr rhs) {
    std::vector<Complex_Selector_Obj> unified_complex_selectors;
    // Unify all of children with RHS's children, storing the results in `unified_complex_selectors`
    for (size_t lhs_i = 0, lhs_L = length(); lhs_i < lhs_L; ++lhs_i) {
      Complex_Selector_Obj seq1 = (*this)[lhs_i];
      for(size_t rhs_i = 0, rhs_L = rhs->length(); rhs_i < rhs_L; ++rhs_i) {
        Complex_Selector_Ptr seq2 = rhs->at(rhs_i);

        Selector_List_Obj result = seq1->unify_with(seq2);
        if( result ) {
          for(size_t i = 0, L = result->length(); i < L; ++i) {
            unified_complex_selectors.push_back( (*result)[i] );
          }
        }
      }
    }

    // Creates the final Selector_List by combining all the complex selectors
    Selector_List_Ptr final_result = SASS_MEMORY_NEW(Selector_List, pstate());
    for (auto itr = unified_complex_selectors.begin(); itr != unified_complex_selectors.end(); ++itr) {
      final_result->append(*itr);
    }
    return final_result;
  }

  void Selector_List::populate_extends(Selector_List_Obj extendee, Subset_Map& extends)
  {

    Selector_List_Ptr extender = this;
    for (auto complex_sel : extendee->elements()) {
      Complex_Selector_Obj c = complex_sel;


      // Ignore any parent selectors, until we find the first non Selectorerence head
      Compound_Selector_Obj compound_sel = c->head();
      Complex_Selector_Obj pIter = complex_sel;
      while (pIter) {
        Compound_Selector_Obj pHead = pIter->head();
        if (pHead && Cast<Parent_Selector>(pHead->elements()[0]) == NULL) {
          compound_sel = pHead;
          break;
        }

        pIter = pIter->tail();
      }

      if (!pIter->head() || pIter->tail()) {
        coreError("nested selectors may not be extended", c->pstate());
      }

      compound_sel->is_optional(extendee->is_optional());

      for (size_t i = 0, L = extender->length(); i < L; ++i) {
        extends.put(compound_sel, std::make_pair((*extender)[i], compound_sel));
      }
    }
  };

  void Compound_Selector::append(Simple_Selector_Ptr element)
  {
    Vectorized<Simple_Selector_Obj>::append(element);
    pstate_.offset += element->pstate().offset;
  }

  Compound_Selector_Ptr Compound_Selector::minus(Compound_Selector_Ptr rhs)
  {
    Compound_Selector_Ptr result = SASS_MEMORY_NEW(Compound_Selector, pstate());
    // result->has_parent_reference(has_parent_reference());

    // not very efficient because it needs to preserve order
    for (size_t i = 0, L = length(); i < L; ++i)
    {
      bool found = false;
      std::string thisSelector((*this)[i]->to_string());
      for (size_t j = 0, M = rhs->length(); j < M; ++j)
      {
        if (thisSelector == (*rhs)[j]->to_string())
        {
          found = true;
          break;
        }
      }
      if (!found) result->append((*this)[i]);
    }

    return result;
  }

  void Compound_Selector::mergeSources(ComplexSelectorSet& sources)
  {
    for (ComplexSelectorSet::iterator iterator = sources.begin(), endIterator = sources.end(); iterator != endIterator; ++iterator) {
      this->sources_.insert(SASS_MEMORY_CLONE(*iterator));
    }
  }

  Argument_Obj Arguments::get_rest_argument()
  {
    if (this->has_rest_argument()) {
      for (Argument_Obj arg : this->elements()) {
        if (arg->is_rest_argument()) {
          return arg;
        }
      }
    }
    return NULL;
  }

  Argument_Obj Arguments::get_keyword_argument()
  {
    if (this->has_keyword_argument()) {
      for (Argument_Obj arg : this->elements()) {
        if (arg->is_keyword_argument()) {
          return arg;
        }
      }
    }
    return NULL;
  }

  void Arguments::adjust_after_pushing(Argument_Obj a)
  {
    if (!a->name().empty()) {
      if (has_keyword_argument()) {
        coreError("named arguments must precede variable-length argument", a->pstate());
      }
      has_named_arguments(true);
    }
    else if (a->is_rest_argument()) {
      if (has_rest_argument()) {
        coreError("functions and mixins may only be called with one variable-length argument", a->pstate());
      }
      if (has_keyword_argument_) {
        coreError("only keyword arguments may follow variable arguments", a->pstate());
      }
      has_rest_argument(true);
    }
    else if (a->is_keyword_argument()) {
      if (has_keyword_argument()) {
        coreError("functions and mixins may only be called with one keyword argument", a->pstate());
      }
      has_keyword_argument(true);
    }
    else {
      if (has_rest_argument()) {
        coreError("ordinal arguments must precede variable-length arguments", a->pstate());
      }
      if (has_named_arguments()) {
        coreError("ordinal arguments must precede named arguments", a->pstate());
      }
    }
  }

  bool Ruleset::is_invisible() const {
    if (Selector_List_Ptr sl = Cast<Selector_List>(selector())) {
      for (size_t i = 0, L = sl->length(); i < L; ++i)
        if (!(*sl)[i]->has_placeholder()) return false;
    }
    return true;
  }

  bool Media_Block::is_invisible() const {
    for (size_t i = 0, L = block()->length(); i < L; ++i) {
      Statement_Obj stm = block()->at(i);
      if (!stm->is_invisible()) return false;
    }
    return true;
  }

  Number::Number(ParserState pstate, double val, std::string u, bool zero)
  : Value(pstate),
    Units(),
    value_(val),
    zero_(zero),
    hash_(0)
  {
    size_t l = 0;
    size_t r;
    if (!u.empty()) {
      bool nominator = true;
      while (true) {
        r = u.find_first_of("*/", l);
        std::string unit(u.substr(l, r == std::string::npos ? r : r - l));
        if (!unit.empty()) {
          if (nominator) numerators.push_back(unit);
          else denominators.push_back(unit);
        }
        if (r == std::string::npos) break;
        // ToDo: should error for multiple slashes
        // if (!nominator && u[r] == '/') error(...)
        if (u[r] == '/')
          nominator = false;
        // strange math parsing?
        // else if (u[r] == '*')
        //  nominator = true;
        l = r + 1;
      }
    }
    concrete_type(NUMBER);
  }

  // cancel out unnecessary units
  void Number::reduce()
  {
    // apply conversion factor
    value_ *= this->Units::reduce();
  }

  void Number::normalize()
  {
    // apply conversion factor
    value_ *= this->Units::normalize();
  }

  bool Custom_Warning::operator== (const Expression& rhs) const
  {
    if (Custom_Warning_Ptr_Const r = Cast<Custom_Warning>(&rhs)) {
      return message() == r->message();
    }
    return false;
  }

  bool Custom_Error::operator== (const Expression& rhs) const
  {
    if (Custom_Error_Ptr_Const r = Cast<Custom_Error>(&rhs)) {
      return message() == r->message();
    }
    return false;
  }

  bool Number::operator== (const Expression& rhs) const
  {
    if (auto rhsnr = Cast<Number>(&rhs)) {
      return *this == *rhsnr;
    }
    return false;
  }

  bool Number::operator== (const Number& rhs) const
  {
    Number l(*this), r(rhs); l.reduce(); r.reduce();
    size_t lhs_units = l.numerators.size() + l.denominators.size();
    size_t rhs_units = r.numerators.size() + r.denominators.size();
    // unitless and only having one unit seems equivalent (will change in future)
    if (!lhs_units || !rhs_units) {
      return NEAR_EQUAL(l.value(), r.value());
    }
    l.normalize(); r.normalize();
    Units &lhs_unit = l, &rhs_unit = r;
    return lhs_unit == rhs_unit &&
      NEAR_EQUAL(l.value(), r.value());
  }

  bool Number::operator< (const Number& rhs) const
  {
    Number l(*this), r(rhs); l.reduce(); r.reduce();
    size_t lhs_units = l.numerators.size() + l.denominators.size();
    size_t rhs_units = r.numerators.size() + r.denominators.size();
    // unitless and only having one unit seems equivalent (will change in future)
    if (!lhs_units || !rhs_units) {
      return l.value() < r.value();
    }
    l.normalize(); r.normalize();
    Units &lhs_unit = l, &rhs_unit = r;
    if (!(lhs_unit == rhs_unit)) {
      /* ToDo: do we always get usefull backtraces? */
      throw Exception::IncompatibleUnits(rhs, *this);
    }
    return lhs_unit < rhs_unit ||
           l.value() < r.value();
  }

  bool String_Quoted::operator== (const Expression& rhs) const
  {
    if (String_Quoted_Ptr_Const qstr = Cast<String_Quoted>(&rhs)) {
      return (value() == qstr->value());
    } else if (String_Constant_Ptr_Const cstr = Cast<String_Constant>(&rhs)) {
      return (value() == cstr->value());
    }
    return false;
  }

  bool String_Constant::is_invisible() const {
    return value_.empty() && quote_mark_ == 0;
  }

  bool String_Constant::operator== (const Expression& rhs) const
  {
    if (String_Quoted_Ptr_Const qstr = Cast<String_Quoted>(&rhs)) {
      return (value() == qstr->value());
    } else if (String_Constant_Ptr_Const cstr = Cast<String_Constant>(&rhs)) {
      return (value() == cstr->value());
    }
    return false;
  }

  bool String_Schema::is_left_interpolant(void) const
  {
    return length() && first()->is_left_interpolant();
  }
  bool String_Schema::is_right_interpolant(void) const
  {
    return length() && last()->is_right_interpolant();
  }

  bool String_Schema::operator== (const Expression& rhs) const
  {
    if (String_Schema_Ptr_Const r = Cast<String_Schema>(&rhs)) {
      if (length() != r->length()) return false;
      for (size_t i = 0, L = length(); i < L; ++i) {
        Expression_Obj rv = (*r)[i];
        Expression_Obj lv = (*this)[i];
        if (!lv || !rv) return false;
        if (!(*lv == *rv)) return false;
      }
      return true;
    }
    return false;
  }

  bool Boolean::operator== (const Expression& rhs) const
  {
    if (Boolean_Ptr_Const r = Cast<Boolean>(&rhs)) {
      return (value() == r->value());
    }
    return false;
  }

  bool Color::operator== (const Expression& rhs) const
  {
    if (Color_Ptr_Const r = Cast<Color>(&rhs)) {
      return r_ == r->r() &&
             g_ == r->g() &&
             b_ == r->b() &&
             a_ == r->a();
    }
    return false;
  }

  bool List::operator== (const Expression& rhs) const
  {
    if (List_Ptr_Const r = Cast<List>(&rhs)) {
      if (length() != r->length()) return false;
      if (separator() != r->separator()) return false;
      if (is_bracketed() != r->is_bracketed()) return false;
      for (size_t i = 0, L = length(); i < L; ++i) {
        Expression_Obj rv = r->at(i);
        Expression_Obj lv = this->at(i);
        if (!lv || !rv) return false;
        if (!(*lv == *rv)) return false;
      }
      return true;
    }
    return false;
  }

  bool Map::operator== (const Expression& rhs) const
  {
    if (Map_Ptr_Const r = Cast<Map>(&rhs)) {
      if (length() != r->length()) return false;
      for (auto key : keys()) {
        Expression_Obj lv = at(key);
        Expression_Obj rv = r->at(key);
        if (!rv || !lv) return false;
        if (!(*lv == *rv)) return false;
      }
      return true;
    }
    return false;
  }

  bool Null::operator== (const Expression& rhs) const
  {
    return rhs.concrete_type() == NULL_VAL;
  }

  bool Function::operator== (const Expression& rhs) const
  {
    if (Function_Ptr_Const r = Cast<Function>(&rhs)) {
      Definition_Ptr_Const d1 = Cast<Definition>(definition());
      Definition_Ptr_Const d2 = Cast<Definition>(r->definition());
      return d1 && d2 && d1 == d2 && is_css() == r->is_css();
    }
    return false;
  }

  size_t List::size() const {
    if (!is_arglist_) return length();
    // arglist expects a list of arguments
    // so we need to break before keywords
    for (size_t i = 0, L = length(); i < L; ++i) {
      Expression_Obj obj = this->at(i);
      if (Argument_Ptr arg = Cast<Argument>(obj)) {
        if (!arg->name().empty()) return i;
      }
    }
    return length();
  }

  Expression_Obj Hashed::at(Expression_Obj k) const
  {
    if (elements_.count(k))
    { return elements_.at(k); }
    else { return NULL; }
  }

  bool Binary_Expression::is_left_interpolant(void) const
  {
    return is_interpolant() || (left() && left()->is_left_interpolant());
  }
  bool Binary_Expression::is_right_interpolant(void) const
  {
    return is_interpolant() || (right() && right()->is_right_interpolant());
  }

  const std::string AST_Node::to_string(Sass_Inspect_Options opt) const
  {
    Sass_Output_Options out(opt);
    Emitter emitter(out);
    Inspect i(emitter);
    i.in_declaration = true;
    // ToDo: inspect should be const
    const_cast<AST_Node_Ptr>(this)->perform(&i);
    return i.get_buffer();
  }

  const std::string AST_Node::to_string() const
  {
    return to_string({ NESTED, 5 });
  }

  std::string String_Quoted::inspect() const
  {
    return quote(value_, '*');
  }

  std::string String_Constant::inspect() const
  {
    return quote(value_, '*');
  }

  bool Declaration::is_invisible() const
  {
    if (is_custom_property()) return false;

    return !(value_ && value_->concrete_type() != Expression::NULL_VAL);
  }

  //////////////////////////////////////////////////////////////////////////////////////////
  // Additional method on Lists to retrieve values directly or from an encompassed Argument.
  //////////////////////////////////////////////////////////////////////////////////////////
  Expression_Obj List::value_at_index(size_t i) {
    Expression_Obj obj = this->at(i);
    if (is_arglist_) {
      if (Argument_Ptr arg = Cast<Argument>(obj)) {
        return arg->value();
      } else {
        return obj;
      }
    } else {
      return obj;
    }
  }

  //////////////////////////////////////////////////////////////////////////////////////////
  // Convert map to (key, value) list.
  //////////////////////////////////////////////////////////////////////////////////////////
  List_Obj Map::to_list(ParserState& pstate) {
    List_Obj ret = SASS_MEMORY_NEW(List, pstate, length(), SASS_COMMA);

    for (auto key : keys()) {
      List_Obj l = SASS_MEMORY_NEW(List, pstate, 2);
      l->append(key);
      l->append(at(key));
      ret->append(l);
    }

    return ret;
  }

  //////////////////////////////////////////////////////////////////////////////////////////
  // Copy implementations
  //////////////////////////////////////////////////////////////////////////////////////////

  #ifdef DEBUG_SHARED_PTR

  #define IMPLEMENT_AST_OPERATORS(klass) \
    klass##_Ptr klass::copy(std::string file, size_t line) const { \
      klass##_Ptr cpy = new klass(this); \
      cpy->trace(file, line); \
      return cpy; \
    } \
    klass##_Ptr klass::clone(std::string file, size_t line) const { \
      klass##_Ptr cpy = copy(file, line); \
      cpy->cloneChildren(); \
      return cpy; \
    } \

  #else

  #define IMPLEMENT_AST_OPERATORS(klass) \
    klass##_Ptr klass::copy() const { \
      return new klass(this); \
    } \
    klass##_Ptr klass::clone() const { \
      klass##_Ptr cpy = copy(); \
      cpy->cloneChildren(); \
      return cpy; \
    } \

  #endif

  IMPLEMENT_AST_OPERATORS(Supports_Operator);
  IMPLEMENT_AST_OPERATORS(Supports_Negation);
  IMPLEMENT_AST_OPERATORS(Compound_Selector);
  IMPLEMENT_AST_OPERATORS(Complex_Selector);
  IMPLEMENT_AST_OPERATORS(Element_Selector);
  IMPLEMENT_AST_OPERATORS(Class_Selector);
  IMPLEMENT_AST_OPERATORS(Id_Selector);
  IMPLEMENT_AST_OPERATORS(Pseudo_Selector);
  IMPLEMENT_AST_OPERATORS(Wrapped_Selector);
  IMPLEMENT_AST_OPERATORS(Selector_List);
  IMPLEMENT_AST_OPERATORS(Ruleset);
  IMPLEMENT_AST_OPERATORS(Media_Block);
  IMPLEMENT_AST_OPERATORS(Custom_Warning);
  IMPLEMENT_AST_OPERATORS(Custom_Error);
  IMPLEMENT_AST_OPERATORS(List);
  IMPLEMENT_AST_OPERATORS(Map);
  IMPLEMENT_AST_OPERATORS(Function);
  IMPLEMENT_AST_OPERATORS(Number);
  IMPLEMENT_AST_OPERATORS(Binary_Expression);
  IMPLEMENT_AST_OPERATORS(String_Schema);
  IMPLEMENT_AST_OPERATORS(String_Constant);
  IMPLEMENT_AST_OPERATORS(String_Quoted);
  IMPLEMENT_AST_OPERATORS(Boolean);
  IMPLEMENT_AST_OPERATORS(Color);
  IMPLEMENT_AST_OPERATORS(Null);
  IMPLEMENT_AST_OPERATORS(Parent_Selector);
  IMPLEMENT_AST_OPERATORS(Import);
  IMPLEMENT_AST_OPERATORS(Import_Stub);
  IMPLEMENT_AST_OPERATORS(Function_Call);
  IMPLEMENT_AST_OPERATORS(Directive);
  IMPLEMENT_AST_OPERATORS(At_Root_Block);
  IMPLEMENT_AST_OPERATORS(Supports_Block);
  IMPLEMENT_AST_OPERATORS(While);
  IMPLEMENT_AST_OPERATORS(Each);
  IMPLEMENT_AST_OPERATORS(For);
  IMPLEMENT_AST_OPERATORS(If);
  IMPLEMENT_AST_OPERATORS(Mixin_Call);
  IMPLEMENT_AST_OPERATORS(Extension);
  IMPLEMENT_AST_OPERATORS(Media_Query);
  IMPLEMENT_AST_OPERATORS(Media_Query_Expression);
  IMPLEMENT_AST_OPERATORS(Debug);
  IMPLEMENT_AST_OPERATORS(Error);
  IMPLEMENT_AST_OPERATORS(Warning);
  IMPLEMENT_AST_OPERATORS(Assignment);
  IMPLEMENT_AST_OPERATORS(Return);
  IMPLEMENT_AST_OPERATORS(At_Root_Query);
  IMPLEMENT_AST_OPERATORS(Variable);
  IMPLEMENT_AST_OPERATORS(Comment);
  IMPLEMENT_AST_OPERATORS(Attribute_Selector);
  IMPLEMENT_AST_OPERATORS(Supports_Interpolation);
  IMPLEMENT_AST_OPERATORS(Supports_Declaration);
  IMPLEMENT_AST_OPERATORS(Supports_Condition);
  IMPLEMENT_AST_OPERATORS(Parameters);
  IMPLEMENT_AST_OPERATORS(Parameter);
  IMPLEMENT_AST_OPERATORS(Arguments);
  IMPLEMENT_AST_OPERATORS(Argument);
  IMPLEMENT_AST_OPERATORS(Unary_Expression);
  IMPLEMENT_AST_OPERATORS(Function_Call_Schema);
  IMPLEMENT_AST_OPERATORS(Block);
  IMPLEMENT_AST_OPERATORS(Content);
  IMPLEMENT_AST_OPERATORS(Trace);
  IMPLEMENT_AST_OPERATORS(Keyframe_Rule);
  IMPLEMENT_AST_OPERATORS(Bubble);
  IMPLEMENT_AST_OPERATORS(Selector_Schema);
  IMPLEMENT_AST_OPERATORS(Placeholder_Selector);
  IMPLEMENT_AST_OPERATORS(Definition);
  IMPLEMENT_AST_OPERATORS(Declaration);
}