Blame view

node_modules/bn.js/README.md 7.05 KB
aaac7fed   liuqimichale   add
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
  # <img src="./logo.png" alt="bn.js" width="160" height="160" />
  
  > BigNum in pure javascript
  
  [![Build Status](https://secure.travis-ci.org/indutny/bn.js.png)](http://travis-ci.org/indutny/bn.js)
  
  ## Install
  `npm install --save bn.js`
  
  ## Usage
  
  ```js
  const BN = require('bn.js');
  
  var a = new BN('dead', 16);
  var b = new BN('101010', 2);
  
  var res = a.add(b);
  console.log(res.toString(10));  // 57047
  ```
  
  **Note**: decimals are not supported in this library.
  
  ## Notation
  
  ### Prefixes
  
  There are several prefixes to instructions that affect the way the work. Here
  is the list of them in the order of appearance in the function name:
  
  * `i` - perform operation in-place, storing the result in the host object (on
    which the method was invoked). Might be used to avoid number allocation costs
  * `u` - unsigned, ignore the sign of operands when performing operation, or
    always return positive value. Second case applies to reduction operations
    like `mod()`. In such cases if the result will be negative - modulo will be
    added to the result to make it positive
  
  ### Postfixes
  
  The only available postfix at the moment is:
  
  * `n` - which means that the argument of the function must be a plain JavaScript
    Number. Decimals are not supported.
  
  ### Examples
  
  * `a.iadd(b)` - perform addition on `a` and `b`, storing the result in `a`
  * `a.umod(b)` - reduce `a` modulo `b`, returning positive value
  * `a.iushln(13)` - shift bits of `a` left by 13
  
  ## Instructions
  
  Prefixes/postfixes are put in parens at the of the line. `endian` - could be
  either `le` (little-endian) or `be` (big-endian).
  
  ### Utilities
  
  * `a.clone()` - clone number
  * `a.toString(base, length)` - convert to base-string and pad with zeroes
  * `a.toNumber()` - convert to Javascript Number (limited to 53 bits)
  * `a.toJSON()` - convert to JSON compatible hex string (alias of `toString(16)`)
  * `a.toArray(endian, length)` - convert to byte `Array`, and optionally zero
    pad to length, throwing if already exceeding
  * `a.toArrayLike(type, endian, length)` - convert to an instance of `type`,
    which must behave like an `Array`
  * `a.toBuffer(endian, length)` - convert to Node.js Buffer (if available). For
    compatibility with browserify and similar tools, use this instead:
    `a.toArrayLike(Buffer, endian, length)`
  * `a.bitLength()` - get number of bits occupied
  * `a.zeroBits()` - return number of less-significant consequent zero bits
    (example: `1010000` has 4 zero bits)
  * `a.byteLength()` - return number of bytes occupied
  * `a.isNeg()` - true if the number is negative
  * `a.isEven()` - no comments
  * `a.isOdd()` - no comments
  * `a.isZero()` - no comments
  * `a.cmp(b)` - compare numbers and return `-1` (a `<` b), `0` (a `==` b), or `1` (a `>` b)
    depending on the comparison result (`ucmp`, `cmpn`)
  * `a.lt(b)` - `a` less than `b` (`n`)
  * `a.lte(b)` - `a` less than or equals `b` (`n`)
  * `a.gt(b)` - `a` greater than `b` (`n`)
  * `a.gte(b)` - `a` greater than or equals `b` (`n`)
  * `a.eq(b)` - `a` equals `b` (`n`)
  * `a.toTwos(width)` - convert to two's complement representation, where `width` is bit width
  * `a.fromTwos(width)` - convert from two's complement representation, where `width` is the bit width
  * `BN.isBN(object)` - returns true if the supplied `object` is a BN.js instance
  
  ### Arithmetics
  
  * `a.neg()` - negate sign (`i`)
  * `a.abs()` - absolute value (`i`)
  * `a.add(b)` - addition (`i`, `n`, `in`)
  * `a.sub(b)` - subtraction (`i`, `n`, `in`)
  * `a.mul(b)` - multiply (`i`, `n`, `in`)
  * `a.sqr()` - square (`i`)
  * `a.pow(b)` - raise `a` to the power of `b`
  * `a.div(b)` - divide (`divn`, `idivn`)
  * `a.mod(b)` - reduct (`u`, `n`) (but no `umodn`)
  * `a.divRound(b)` - rounded division
  
  ### Bit operations
  
  * `a.or(b)` - or (`i`, `u`, `iu`)
  * `a.and(b)` - and (`i`, `u`, `iu`, `andln`) (NOTE: `andln` is going to be replaced
    with `andn` in future)
  * `a.xor(b)` - xor (`i`, `u`, `iu`)
  * `a.setn(b)` - set specified bit to `1`
  * `a.shln(b)` - shift left (`i`, `u`, `iu`)
  * `a.shrn(b)` - shift right (`i`, `u`, `iu`)
  * `a.testn(b)` - test if specified bit is set
  * `a.maskn(b)` - clear bits with indexes higher or equal to `b` (`i`)
  * `a.bincn(b)` - add `1 << b` to the number
  * `a.notn(w)` - not (for the width specified by `w`) (`i`)
  
  ### Reduction
  
  * `a.gcd(b)` - GCD
  * `a.egcd(b)` - Extended GCD results (`{ a: ..., b: ..., gcd: ... }`)
  * `a.invm(b)` - inverse `a` modulo `b`
  
  ## Fast reduction
  
  When doing lots of reductions using the same modulo, it might be beneficial to
  use some tricks: like [Montgomery multiplication][0], or using special algorithm
  for [Mersenne Prime][1].
  
  ### Reduction context
  
  To enable this tricks one should create a reduction context:
  
  ```js
  var red = BN.red(num);
  ```
  where `num` is just a BN instance.
  
  Or:
  
  ```js
  var red = BN.red(primeName);
  ```
  
  Where `primeName` is either of these [Mersenne Primes][1]:
  
  * `'k256'`
  * `'p224'`
  * `'p192'`
  * `'p25519'`
  
  Or:
  
  ```js
  var red = BN.mont(num);
  ```
  
  To reduce numbers with [Montgomery trick][0]. `.mont()` is generally faster than
  `.red(num)`, but slower than `BN.red(primeName)`.
  
  ### Converting numbers
  
  Before performing anything in reduction context - numbers should be converted
  to it. Usually, this means that one should:
  
  * Convert inputs to reducted ones
  * Operate on them in reduction context
  * Convert outputs back from the reduction context
  
  Here is how one may convert numbers to `red`:
  
  ```js
  var redA = a.toRed(red);
  ```
  Where `red` is a reduction context created using instructions above
  
  Here is how to convert them back:
  
  ```js
  var a = redA.fromRed();
  ```
  
  ### Red instructions
  
  Most of the instructions from the very start of this readme have their
  counterparts in red context:
  
  * `a.redAdd(b)`, `a.redIAdd(b)`
  * `a.redSub(b)`, `a.redISub(b)`
  * `a.redShl(num)`
  * `a.redMul(b)`, `a.redIMul(b)`
  * `a.redSqr()`, `a.redISqr()`
  * `a.redSqrt()` - square root modulo reduction context's prime
  * `a.redInvm()` - modular inverse of the number
  * `a.redNeg()`
  * `a.redPow(b)` - modular exponentiation
  
  ## LICENSE
  
  This software is licensed under the MIT License.
  
  Copyright Fedor Indutny, 2015.
  
  Permission is hereby granted, free of charge, to any person obtaining a
  copy of this software and associated documentation files (the
  "Software"), to deal in the Software without restriction, including
  without limitation the rights to use, copy, modify, merge, publish,
  distribute, sublicense, and/or sell copies of the Software, and to permit
  persons to whom the Software is furnished to do so, subject to the
  following conditions:
  
  The above copyright notice and this permission notice shall be included
  in all copies or substantial portions of the Software.
  
  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
  NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
  DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  USE OR OTHER DEALINGS IN THE SOFTWARE.
  
  [0]: https://en.wikipedia.org/wiki/Montgomery_modular_multiplication
  [1]: https://en.wikipedia.org/wiki/Mersenne_prime