Blame view

node_modules/node-forge/lib/prime.worker.js 4.69 KB
aaac7fed   liuqimichale   add
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
  /**
   * RSA Key Generation Worker.
   *
   * @author Dave Longley
   *
   * Copyright (c) 2013 Digital Bazaar, Inc.
   */
  // worker is built using CommonJS syntax to include all code in one worker file
  //importScripts('jsbn.js');
  var forge = require('./forge');
  require('./jsbn');
  
  // prime constants
  var LOW_PRIMES = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997];
  var LP_LIMIT = (1 << 26) / LOW_PRIMES[LOW_PRIMES.length - 1];
  
  var BigInteger = forge.jsbn.BigInteger;
  var BIG_TWO = new BigInteger(null);
  BIG_TWO.fromInt(2);
  
  self.addEventListener('message', function(e) {
    var result = findPrime(e.data);
    self.postMessage(result);
  });
  
  // start receiving ranges to check
  self.postMessage({found: false});
  
  // primes are 30k+i for i = 1, 7, 11, 13, 17, 19, 23, 29
  var GCD_30_DELTA = [6, 4, 2, 4, 2, 4, 6, 2];
  
  function findPrime(data) {
    // TODO: abstract based on data.algorithm (PRIMEINC vs. others)
  
    // create BigInteger from given random bytes
    var num = new BigInteger(data.hex, 16);
  
    /* Note: All primes are of the form 30k+i for i < 30 and gcd(30, i)=1. The
      number we are given is always aligned at 30k + 1. Each time the number is
      determined not to be prime we add to get to the next 'i', eg: if the number
      was at 30k + 1 we add 6. */
    var deltaIdx = 0;
  
    // find nearest prime
    var workLoad = data.workLoad;
    for(var i = 0; i < workLoad; ++i) {
      // do primality test
      if(isProbablePrime(num)) {
        return {found: true, prime: num.toString(16)};
      }
      // get next potential prime
      num.dAddOffset(GCD_30_DELTA[deltaIdx++ % 8], 0);
    }
  
    return {found: false};
  }
  
  function isProbablePrime(n) {
    // divide by low primes, ignore even checks, etc (n alread aligned properly)
    var i = 1;
    while(i < LOW_PRIMES.length) {
      var m = LOW_PRIMES[i];
      var j = i + 1;
      while(j < LOW_PRIMES.length && m < LP_LIMIT) {
        m *= LOW_PRIMES[j++];
      }
      m = n.modInt(m);
      while(i < j) {
        if(m % LOW_PRIMES[i++] === 0) {
          return false;
        }
      }
    }
    return runMillerRabin(n);
  }
  
  // HAC 4.24, Miller-Rabin
  function runMillerRabin(n) {
    // n1 = n - 1
    var n1 = n.subtract(BigInteger.ONE);
  
    // get s and d such that n1 = 2^s * d
    var s = n1.getLowestSetBit();
    if(s <= 0) {
      return false;
    }
    var d = n1.shiftRight(s);
  
    var k = _getMillerRabinTests(n.bitLength());
    var prng = getPrng();
    var a;
    for(var i = 0; i < k; ++i) {
      // select witness 'a' at random from between 1 and n - 1
      do {
        a = new BigInteger(n.bitLength(), prng);
      } while(a.compareTo(BigInteger.ONE) <= 0 || a.compareTo(n1) >= 0);
  
      /* See if 'a' is a composite witness. */
  
      // x = a^d mod n
      var x = a.modPow(d, n);
  
      // probably prime
      if(x.compareTo(BigInteger.ONE) === 0 || x.compareTo(n1) === 0) {
        continue;
      }
  
      var j = s;
      while(--j) {
        // x = x^2 mod a
        x = x.modPowInt(2, n);
  
        // 'n' is composite because no previous x == -1 mod n
        if(x.compareTo(BigInteger.ONE) === 0) {
          return false;
        }
        // x == -1 mod n, so probably prime
        if(x.compareTo(n1) === 0) {
          break;
        }
      }
  
      // 'x' is first_x^(n1/2) and is not +/- 1, so 'n' is not prime
      if(j === 0) {
        return false;
      }
    }
  
    return true;
  }
  
  // get pseudo random number generator
  function getPrng() {
    // create prng with api that matches BigInteger secure random
    return {
      // x is an array to fill with bytes
      nextBytes: function(x) {
        for(var i = 0; i < x.length; ++i) {
          x[i] = Math.floor(Math.random() * 0xFF);
        }
      }
    };
  }
  
  /**
   * Returns the required number of Miller-Rabin tests to generate a
   * prime with an error probability of (1/2)^80.
   *
   * See Handbook of Applied Cryptography Chapter 4, Table 4.4.
   *
   * @param bits the bit size.
   *
   * @return the required number of iterations.
   */
  function _getMillerRabinTests(bits) {
    if(bits <= 100) return 27;
    if(bits <= 150) return 18;
    if(bits <= 200) return 15;
    if(bits <= 250) return 12;
    if(bits <= 300) return 9;
    if(bits <= 350) return 8;
    if(bits <= 400) return 7;
    if(bits <= 500) return 6;
    if(bits <= 600) return 5;
    if(bits <= 800) return 4;
    if(bits <= 1250) return 3;
    return 2;
  }